
7 Segment Display & Multiplexing Code and Schematic
by

MagiDavid

On the following pages you'll find the code used in the 7 segment display video tutorials along with
the schematic used to wire up the display. If you have any questions feel free to contact me via youtube
or at www.neoloch.com

Notes:

ICSP

It's beyond the scope of this datasheet to cover all the ins and outs of ICSP, but I'll cover the few points
that relate to the second video and usage of ICSP.

Since most often the microcontroller being programmed will be under circuit power (otherwise the
PICkit will have to power the circuit), ICSP requires that proper isolation circuitry be employed to
prevent the signals for the programming device being corrupted by signals for the circuit the
programming device is plugged into. In this case a PICkit™ 2 is the programmer. During the first video
implementing the PICkit 2 didn't seem practical since the LED display is connected directly to +5V.
That in itself would probably cause interference and prevent ICSP form operating correctly.

In the second video the two transistors add a buffer between the display and V+ and we have the
addition of a 1K ohm resistor between RB7 and digit 2's transistor provided enough isolation so that
programming is possible. It's best, and I practice this when possible, to keep ICSP signals seperate from
the circuit, but in this case it's not possible because of the limited number of I/O bits.

MCLR – VERY IMPORTANT

When dealing with microcontrollers that require an external pull-up resistor on MCLR, you MUST
include an isolation diode to prevent programming voltage generated by the programmer from feeding
back into the rest of the circuit. Programming a microcontroller without the diode in place can result in
damage to the rest of the circuit.

Suggested reading:
http://ww1.microchip.com/downloads/en/DeviceDoc/30277d.pdf

http://www.neoloch.com/

Copyright and Distribution Notice
The contents of this file are being distributed under the:

All NeoLoch, LLC code listed on this page is licensed under the Creative Commons Attribution-
NonCommercial 3.0 Unported License.

You are free:
• to Share — to copy, distribute and transmit the work
• to Remix — to adapt the work

Under the following conditions:
• Attribution — You must attribute this work to NeoLoch, LLC (with link).

What does "Attribute this work" mean?
The page you came from contained embedded licensing metadata, including how the creator
wishes to be attributed for re-use. You can use the HTML here to cite the work. Doing so will
also include metadata on your page so that others can find the original work as well.

• Noncommercial — You may not use this work for commercial purposes.

If you have any questions regarding the licensing of this product please contact NeoLoch, LLC for
clarification.

http://www.neoloch.com/
http://www.neoloch.com/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/

Assembly Code Listing
Below is the assembly code as it appears at the final stage of the second video. Feel free to edit this
code for use in your own projects.

;==

list p=16F54 ; list directive to define processor
#include <p16F5x.inc> ; processor specific variable definitions

__CONFIG _CP_OFF & _WDT_OFF & _RC_OSC

; '__CONFIG' directive is used to embed configuration word within .asm file.
; The lables following the directive are located in the respective .inc file.
; See respective data sheet for additional information on configuration word.

;***** VARIABLE DEFINITIONS
DISP_7SEG UDATA
DISP_COUNTER RES 1
DISP_TEMP RES 1
DISP_LOOP RES 1
DISP_FREQ RES 1

;**
RESET_VECTOR CODE 0x1FF ; processor reset vector

GOTO START

ORG 0x000

START
CLRF DISP_COUNTER
CLRF DISP_TEMP
CLRF DISP_LOOP
CLRW
TRIS PORTB
TRIS PORTA

MAIN
CALL DISP_UPDATE_D1
CALL DISP_PAUSE
CALL DISP_UPDATE_D2
CALL DISP_PAUSE
INCFSZ DISP_FREQ
GOTO MAIN
INCF DISP_COUNTER,F
GOTO MAIN

DISP_UPDATE_D1
BCF PORTB,7 ;TURN OFF DIGIT 2.
SWAPF DISP_COUNTER,W ;SWAP NIBBLES AND STORE IN W.
MOVWF DISP_TEMP
MOVLW 0X0F
ANDWF DISP_TEMP,W ;GET LOW NIBBLE FOR DISPLAY.
CALL SEVENSEG_LOOKUP
MOVWF PORTB ;PUT DATA ON PORTB.
BSF PORTA,0 ;TURN ON DIGIT 1.
RETURN

DISP_UPDATE_D2
BCF PORTA,0 ;TURN OFF DIGIT 1.
MOVLW 0X0F
ANDWF DISP_COUNTER,W
CALL S EVENSEG_LOOKUP
MOVWF PORTB
BSF P ORTB,7
RETURN

DISP_PAUSE
CLRF DISP_TEMP
CLRF DISP_LOOP

DISP_PAUSE2
INCFSZ DISP_TEMP,F
GOTO DISP_PAUSE2
RETURN

;--
; NUMBERIC LOOKUP TABLE FOR 7 SEG
;--
SEVENSEG_LOOKUP

ADDWF PCL,F
RETLW 0X40
RETLW 0X79
RETLW 0X24

RETLW 0X30
RETLW 0X19
RETLW 0X12
RETLW 0X02
RETLW 0X78
RETLW 0X00
RETLW 0X18
RETLW 0X08
RETLW 0X03
RETLW 0X46
RETLW 0X21
RETLW 0X06
RETLW 0X0E

; remaining code goes here

END ; directive 'end of program'

	You are free:
	Under the following conditions:

